Scale-up and Testing of Advanced Materials from the BATT Program

Vincent Battaglia, Ph.D.

Lawrence Berkeley National Laboratory

May 15, 2013

ES029)

Overview

Timeline

Start: 10/2009

End: 9/2013

Percent complete: 87.5

Budget

Total project funding:

\$760 k

(DOE Share: 100 %)

Funding received in FY12:

\$ 190 k

Funding for FY13:

\$190 k

Barriers

- Barriers / Targets addressed
 - Cost System = 100 \$/kWh
 - Performance Power: Energy =2:1
 - Life Deep discharge cycles = 750

Partners

NEI

ANL

Daikin

SNL

Umicore

CWRU

Conoco Phillips

U. Texas

Timcal

Celgard

Relevance / Objectives

- Objective for 2012-2013:
 - Using high-quality coin cells, evaluate materials as they are developed in the BATT program and compare to an industry standard.
 - Evaluate materials for a baseline LiNi_{1/2}Mn_{3/2}O₄ system for ABR and BATT.
- Relevance to Vehicle Technology Program:
 - This provides a mechanism for measuring progress within the Program.
 - Both the more applied and more fundamental Programs are interested in high-voltage cathodes to find a path to high energy.
- Impact on barriers:
 - Allows DOE to track progress toward energy density and cycle life goals.

Milestones

 Test a number of BATT materials and present at the DOE AMR.

 Test a number of materials for the highvoltage cathode system for ABR and BATT and report at DOE AMR.

Approach/Strategy

- Unique aspects of work:
 - Research focused on making high quality electrodes and cells
 - Ability to assess power capability of material in similar electrodes; determine sources of capacity (side reactions, phase changes, resistance rise) and power (ohmic, kinetic, and mass transfer resistance of cathode and anode) fade.
- Technical barriers addressed
 - Standard electrodes made and rate tested
 - Cycle life measured
- Integration with ABR and BATT
 - Work closely with BATT Pls to identify promising materials
 - Work closely with ABR suppliers to identify nextgeneration materials

Assessing BATT PI Materials

Scherson's nonflammable salt

Baseline Electrolyte

Baseline Electrolyte+ VC + Flame retardant salt

No negative impacts on cycle life; Encouraged to test in large cells for abuse characteristics.

Assessing BATT PI High-Voltage Materials

Baseline Material (NEI)

w/graphite anode

Half the capacity lost in both cells before C/3 testing; nearly all capacity lost in 100 cycles at 55°C

Assessing BATT PI High-Voltage Materials

Baseline Material (NEI)

w/graphite anode

Side reaction on anode increases with temp.to *ca*. 0.51 mA/g at 55°C;

Charge limit diving rapidly, initially. Side reaction on anode accelerates at C/3.

Assessing BATT PI High-Voltage Materials

Baseline Material (NEI)

w/graphite anode

At 30°C the material experiences a phase transformation from a 2-phase material to a single phase material and the cell experiences a high first cycle inefficiency.

One sees the anode marching along while the cathode stays put.

Assessing BATT PI High-Voltage Materials

Baseline Material (NEI)

At 30°C the transformation appears complete as the rate is increased. With the transition to 55°C the phase transformation is complete after 1 cycle and the cell experiences a second high first cycle inefficiency.

Assessing BATT PI Two High-Voltage Materials

2 P.I. Materials @ 55°C

The doped material appears to hold up better through the first 15 cycles; both suffer the same fate upon subsequent cycling.

Assessing BATT PI High-Voltage Materials

2 P.I. Materials @ 55°C

Side reaction on anode *ca*. 1.25 mA/g before it accelerates at 375 hours.

Large capacity drop when rate increased from C/20 to C/10

Large irrev. loss when temperature rose from 30 to 55°C.

Side reaction on anode *ca*. 0.83 mA/g before it accelerates at 375 hours.

Not much loss with switch in cycling rates

Assessing BATT PI High-Voltage Materials

2 P.I. Materials @ 55°C

No phase change seen in the voltage curves during the first 10 cycles at 55°C.

Assessing Supplier High-Voltage Materials

C65 New Conductive Additives from Timcal

Super P

These high surface area carbons form chains which are integral to their performance

The Super P consists of the largest particles.

Assessing Supplier High-Voltage Materials

Carbon's to be tested

- Acetylene black (AB, from Denka - baseline)
- VGCF
- Super P-Li (from Timcal)
- Super C 65 (from Timcal)
- Super C 45 (from Timcal)

Baseline cell conditions

- LNMO/Li half-cell
- Cathode: LNMO (NEI #3)/PVDF/ Conductive additive
- LiPF₆/EC-DEC (Daikin, 1M, 1:2 vol)
- Celgard 2400 separator Test rate: C/10
- Cut-off potential: 4.99V

Large side reaction in the presence of Li counter electrode

Assessing Supplier High-Voltage Materials

All of these carbons show erratic voltage behavior as a result of the production of a gas.

Assessing Supplier High-Voltage Materials

- Lower loading cathodes w/ Super P do not display the erratic voltage behavior.
- This is not seen for the low loading cathodes with C45.
- Lower loadings w/Super P form less CO₂ and can be reduced by the lithium.

Assessing Supplier High-Voltage Materials

Celgard 2400

Alternative Separators

- Celgard 2500
- Celgard 3501

Product	Thickness	JIS Gurley	Porosity	TD Shrinkage	Materials
2400	25 μm	620 seconds	Medium	0%	PP
2500	25 μm	200 seconds	High	0%	PP
3501	25 μm	200 seconds	High	0%	PP

Cell Testing Materials and Protocol

- LNMO/Li half-cell
- LNMO (NEI #3)/PVDF/AB
- LiPF₆/EC-DEC (Daikin, 1M, 1:2 vol)
- Test rate: C/10
- Cut-off potential: 4.85V

Assessing Supplier High-Voltage Materials

Separator with lower porosity and permeability resolves the erratic voltage issue during charge.

Collaboration and Coordination with Other Institutions

- NEI
 - Partner, Industry, outside VT, materials
- Daikin
 - Partner, Industry, outside VT, materials
- Umicore
 - Partner, Industry, outside VT, materials
- Conoco Phillips
 - Partner, Industry, outside VT, materials
- Timcal
 - Partner, Industry, outside VT, materials
- Celgard
 - Partner, Industry, outside VT, materials
- Case Western Reserve University
 - Partner, University, within VT, material exchange
- University of Texas
 - Partner, University, within VT, material exchange
- ANL
 - Partner, Federal Lab, within VT, information exchange
- SNL
 - Partner, Federal Lab, within VT, information exchange

Future Work

- Test additional BATT PI materials.
 - Focus on Electrolytes and Anodes the rest of this year
 - Electrolyte additive from ANL is under test.
 - · A cathode material from LBNL is on its way
- Work with others to understand the acceleration of side reactions with cycling at 55°C and screen possible alternative electrolytes.
- Verify the production and composition of a gas in the cell via the use of a mass spec. This may help identify the source of the gas.
- Test a cell where the gas is extracted during testing to see if the erratic cell behavior can be affected.
- Develop advanced electrolytes via the recently announced DOE FOA.

Summary

- Scherson's flame retardant salt additive shows no measureable negative impacts on cycleability.
- BATT Pl's cathode materials show improvement in phase transition but still suffer at high temperature due to unstable electrolyte.
- The presence of high-surface area conductive carbon contributes to the amount of side reaction in the high voltage cathode.
- Cells with lithium show an erratic voltage during charge. We believe this is due to the formation of gas.
- Super P results in the least amount of erratic behavior.
- Cells of a low loading of 0.6 mAh/cm² and Super P cycle without the erratic effect of a gas.
- More porous separators result in more erratic cell behavior.
- Two theories:
 - 1. Products from the anode oxidize in the cathode to form gas (thicker electrodes = more surface area for CO₂ production from oxalate, separator limits oxalate crossover from anode).
 - 2. The gas is formed on the anode by some product produced in the cathode (thicker electrode results in more soluble product formed).
- Gas sampling may help sort this out.